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Abstract.

This study explores the uncertainties in modeling organic aerosol (OA) over Central Europe, focusing on the roles of

chemical mechanisms, emission parameterizations, and boundary conditions. Organic aerosols, particularly secondary organic

aerosols (SOAs), significantly influence climate, health, and visibility, comprising up to 90 % of submicron particulate matter.

Using the Comprehensive Air Quality Model with Extensions (CAMx) coupled with the Weather Research and Forecast Model,5

sensitivity analyses were conducted to assess the impact of intermediate-volatility organic compounds (IVOCs), semi-volatile

organic compounds (SVOCs), and chemical boundary conditions on primary and secondary organic aerosol concentrations.

Results showed that including source-specific IVOC and SVOC emissions significantly improved CAMx’s performance

in reproducing observed OA levels, mainly when using the 1.5-dimensional Volatility Basis Set framework with activated

chemical aging. For example, the domain-averaged SOA concentrations increased by up to 1.17 µg m−3 during summer when10

both IVOC and SVOC emissions were included. Furthermore, incorporating OA into the boundary conditions enhanced model

predictions, with the accuracy of modeled organic carbon concentrations improving by up to 100 % during summer at some

monitoring sites. Despite these improvements, challenges remain due to uncertainties in emission estimates, parameterization

schemes, and the spatial resolution of the models.

The findings underscore the importance of refined parameterizations for IVOC and SVOC emissions, higher temporal and15

spatial resolution in chemical boundary conditions, and better representation of chemical aging. Addressing these gaps in future

studies will further enhance the understanding and prediction of OA dynamics in regional air quality modeling.

1 Introduction

Atmospheric aerosols are liquid or solid particles suspended in the atmosphere, which have substantial climate impacts via

direct and indirect radiative effects (Li et al., 2022; Arola et al., 2022), negatively affect human health (Arias-Pérez et al., 2020;20

Ain and Qamar, 2021), reduce visibility (Singh and Dey, 2012), and have an undoubted environmental footprint, especially
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near large urban areas (Wu and Boor, 2021). Organic aerosol (OA) constitutes a significant fraction of the total aerosol in the

submicron range (PM1; particles with an aerodynamic diameter less than 1 µm). In terms of the total mass of PM1, OA can

account for as much as 90 % (Jimenez et al., 2009; Zhang et al., 2011; Crippa et al., 2014; Chen et al., 2022). For instance,

in Europe, Lanz et al. (2010) reported OA contributions to the total PM1 mass ranging from 36 to 81 %, while Morgan et al.25

(2010) measured values between 20 and 50 %. Additionally, these contributions tend to be higher over urban areas compared to

rural ones (Bressi et al., 2013; Sandrini et al., 2016). Recently, Chen et al. (2022) noted that oxygenated OA components, which

serve as proxies for secondary organic aerosol (SOA), comprise between 43.7 and 100 % of the submicron OA mass in Europe.

They also stated that solid fuel combustion-related OA components still represent a significant portion of the submicron OA

mass, particularly during winter (on average 21.4 %). These experimental findings highlight the need to identify sources of OA30

and assess their contributions to total concentrations of OA. Only based on their knowledge is it possible to develop effective

strategies for reducing overall OA concentrations. Chemical transport models (CTMs) are essential tools for achieving these

goals.

Over the past two decades, the approaches utilized for OA modeling in CTMs have evolved considerably. Traditionally, the

modeling of primary (directly emitted) organic aerosol (POA) in CTMs has assumed that POA is non-volatile and chemically35

inert. At the same time, SOA formation has typically been modeled using the gas–particle partitioning of condensable products

originating from the oxidation of reactive organic gases (e.g., Strader et al., 1999; Schell et al., 2001; Byun and Schere,

2006). This partitioning has often been approximated by applying absorptive partitioning in a pseudo-ideal solution (Pankow,

1994; Odum et al., 1996). Contrary to the traditional assumptions about POA, the experimental results showed that POA is

mostly semi-volatile under ambient conditions, and the gas-phase portion can undergo photochemical oxidation, resulting in40

SOA formation (e.g., Robinson et al., 2007; Donahue et al., 2009). These findings led Donahue and his colleagues to develop

two unified frameworks for gas–particle partitioning and chemical aging of both POA and SOA, known as volatility basis sets

(VBSs). The first of these frameworks, referred to as the 1-dimensional (1-D) VBS, describes the evolution of OA by employing

a set of lumped semi-volatile OA species with their volatilities equally spaced in a logarithmic scale (the basis set) (Donahue

et al., 2006). In terms of effective saturation concentrations (C⋆) at a thermodynamic temperature of 298 K, 1-D VBS typically45

range from 0.01 to 106 µg m−3, which covers three subcategories of organic compounds: low volatility organic compounds

(LVOCs; C⋆ = {0.01,0.1} µg m−3), semi-volatile organic compounds (SVOCs; C⋆ = {1,10,100} µg m−3), and intermediate

volatility organic compounds (IVOCs; C⋆ = {103,104,105,106} µg m−3) (Donahue et al., 2009). The second framework,

known as the 2-dimensional (2-D) VBS, describes the evolution of OA in a 2-D space defined by volatility and the degree of

oxidation (Donahue et al., 2011, 2012). Later, Koo et al. (2014) developed a 1.5-dimensional (1.5-D) VBS approach that is50

based on the 1-D VBS framework but accounts for changes in the oxidation state of OA as well as its volatility using multiple

reaction trajectories defined in the 2-D space of the 2-D VBS framework. However, despite these advances in OA modeling,

CTMs still face challenges in accurately reproducing measured OA concentrations, mainly due to the underestimation of SOA

concentrations.

Several studies have shown that using both the original 1.5-D VBS and its various modifications, along with the inclusion of55

emission estimates for missing SOA precursors, can significantly improve the model predictions of SOA in different regions
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of the Earth (e.g., Zhang et al., 2023; Jiang et al., 2021, 2019b; Yao et al., 2020; Giani et al., 2019; Meroni et al., 2017;

Ciarelli et al., 2017; Woody et al., 2016). The term “missing SOA precursors" means IVOCs and SVOCs, as they are missing

in traditional emission inventories used to create input emission data for CTMs. However, these studies also indicate that

the degree of improvement achieved is accompanied by considerable uncertainty. This uncertainty is partly caused by the60

inaccuracy of a large number of parameters characterizing individual basic sets, such as, for example, effective enthalpies

of vaporization of POA and SOA species, product mass yields for oxidation of IVOCs, and the reaction rates associated

with these oxidations, which are constrained using data obtained from smog chamber experiments. It was demonstrated, for

example, by Jiang et al. (2021), who significantly improved the modeled concentrations of OA and SOA over Europe during

winter by using optimized parameters in the basis sets for POA and SOA originating from biomass burning. These optimized65

parameters were specifically determined to account for the losses of semi-volatile vapors on the walls of the smog chamber

used in the experiments conducted to determine them. Similarly, Ciarelli et al. (2017) updated a modified 1.5-D VBS scheme

with parameters determined based on novel smog chamber experiments focused on biomass burning and showed that these

updates significantly improved the modeled concentrations of total OA and SOA over Europe. Also, Jiang et al. (2019b)

created a modified 1.5-D VBS scheme, optimized using parameters based on current smog chamber experiments focused70

on emissions from diesel cars and biomass burning. They demonstrated that this modified VBS scheme improved the model

performance for total OA as well as its components, including hydrocarbon-like OA, biomass-burning-like OA, and oxygenated

OA components.

Another significant source of uncertainty in the modeled concentrations of OA and its components when using traditional

emission inventories are the emission estimates of missing SOA precursors and the volatility distribution factors for POA75

emissions. Regarding IVOC emissions, many previous works (e.g., Meroni et al., 2017; Denier van der Gon et al., 2015; Koo

et al., 2014; Tsimpidi et al., 2010) estimated them using a source-non-specific parameterization (IVOC = 1.5× POA) proposed

by Robinson et al. (2007). However, this simplifying assumption has been partially addressed over time by establishing several

source-specific parameterizations for IVOC emission estimates. These parameterizations were derived from smog chamber

experiments conducted with emissions from various sources, such as biomass burning, diesel vehicles, and gasoline vehicles80

(e.g., Jiang et al., 2021; Giani et al., 2019; Ciarelli et al., 2017; Zhao et al., 2016, 2015; Jathar et al., 2014). Further, in

order to account for missing SVOC emissions in model simulations employing VBS approaches, many researchers have opted

to increase the amount of POA emissions by a factor of 3 (e.g., Jiang et al., 2021, 2019b; Li et al., 2020; Ciarelli et al.,

2017, 2016; Matsui et al., 2014; Shrivastava et al., 2011; Hodzic et al., 2010; Tsimpidi et al., 2010). This adjustment is based

on partition theory predictions to compensate for missing gaseous emissions in the semi-volatile range (Ciarelli et al., 2017)85

so that the adjusted POA emissions should represent total primary organic matter in the entire semi-volatile range (POM SV).

Here, it is appropriate to note that this approach is in good agreement with the results of Denier van der Gon et al. (2015), who

constructed a revised European bottom-up emission inventory for residential wood combustion accounting for SVOCs and

showed that the revised emissions are higher than those in the previous inventory by a factor of 2–3 but with substantial inter-

country variation. Recently, to overcome the above-mentioned theory-based approach to estimating POM SV, Giani et al. (2019)90

used the experimental studies of Zhao et al. (2015) and Zhao et al. (2016), which examined emissions from diesel and gasoline
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vehicles, respectively. These studies provided not only estimates of IVOC emissions, scaled according to emissions of non-

methane hydrocarbons but also the complete volatility distributions of these emissions. Using these distributions, Giani et al.

(2019) could determine the ratios between IVOC and POM SV emissions. Subsequently, using these ratios, they determined the

POM SV emissions themselves.95

In this study, we present two sensitivity analyses focused on various aspects related to the transport and chemistry of OA

over Central Europe. The first analysis investigates how estimates of IVOC and POMSV emissions influence the modeled

concentrations of OA, considering various model approaches to gas-phase chemistry and the chemical and thermodynamic

processes associated with OA. In comparison with previous works devoted to a similar topic over Europe (e.g., Jiang et al.,

2021; Giani et al., 2019; Ciarelli et al., 2017; Meroni et al., 2017; Ciarelli et al., 2016), which focused mainly on the winter100

period, we concentrate on the winter and summer periods in our study. The second sensitivity analysis evaluates the impact

of large-scale transport of OA, i.e., the effect of incorporating OA data, including their partition to primary and secondary

fractions, into the chemical boundary conditions. Due to the size and location of the model domain we used, this type of

sensitivity analysis is crucial.

2 Methodology105

All model experiments utilized in this study were conducted using the Comprehensive Air Quality Model with Extensions

(CAMx) version 7.10 (Ramboll, 2020), which was offline coupled with the Weather Research and Forecast (WRF) Model

version 4.2 (Skamarock et al., 2019) and the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.10

(Guenther et al., 2012). The two model experiments employed in both sensitivity analyses (henceforth referred to as CSwI

and CVb) were taken from the work of Bartík et al. (2024), in which they represent the base simulations of the SOAP and110

VBS experiments. All additional experiments were conducted on the same Central European model domain as CSwI and

CVb. This domain, characterized by a horizontal resolution of 9 km × 9 km, is centered over Prague (50.075◦ N, 14.44◦ E),

Czech Republic (Fig. 1). In addition, these additional experiments were carried out for the same period as CSwI and CVb (i.e.,

for the years 2018 and 2019) and utilized the same driving meteorological fields as these two experiments. A comprehensive

description of the model domain and the configuration of the WRF model simulation used to produce the driving meteorological115

fields can be found in Bartík et al. (2024).

2.1 CAMx and its configurations used

CAMx is a state-of-the-art Eulerian CTM designed to simulate all key processes involved in the transport and chemistry of

pollutants. These processes include horizontal and vertical advection, horizontal and vertical diffusion, gas-phase and aerosol

chemistry, and wet and dry deposition.120

To solve gas-phase chemistry in the model experiments, we used two different mechanisms. The first mechanism was the

fifth revision of the Carbon Bond mechanism version 6 (CB6r5), which contains 233 reactions among 87 species (62 state

gases and 25 radicals; Ramboll, 2020). The second mechanism was SAPRC07TC, the version of the Statewide Air Pollution

4

https://doi.org/10.5194/egusphere-2025-167
Preprint. Discussion started: 25 April 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 1. Resolved model terrain altitude above sea level (in m).

Research Center 2007 mechanism (Carter, 2010; Hutzell et al., 2012). SAPRC07TC includes 565 reactions among 117 species

(72 state gases and 45 radicals; Ramboll, 2020). To solve both mechanisms numerically, we applied the Euler Backward125

Iterative method developed by Hertel et al. (1993).

Further, we employed a static two-mode coarse/fine (CF) scheme to run gas-phase chemistry with aerosol chemistry pro-

cesses. This scheme divides the aerosol size distribution into two static modes (coarse and fine). To predict the composition

and physical state of inorganic aerosols, we used the thermodynamic equilibrium model ISORROPIA version 1.7 (Nenes et al.,

1998, 1999). Aqueous aerosol formation in resolved cloud water was calculated using the modified version of the RADM130

(Regional Acid Deposition Model) aqueous chemistry algorithm (Ramboll, 2020), developed initially by Chang et al. (1987).

Among others, the RADM algorithm handles the aqueous formation of SOA from glyoxal, methyl glyoxal, and glycolaldehyde

(Ortiz-Montalvo et al., 2012; Lim et al., 2013). Two modules are responsible for controlling organic gas–particle partitioning

and oxidation chemistry in CAMx version 7.10 (Ramboll, 2020). The first is the Secondary Organic Aerosol Processor (SOAP)

version 2.2, which was initially developed by Strader et al. (1999). The second module is 1.5-D VBS created by Koo et al.135

(2014). Since both modules are utilized in our model experiments, it is essential to clarify their differences, which we address

in Appendix A.

Additionally, we used the CAMx wet deposition model (Ramboll, 2020) to solve the wet deposition of gases and aerosols.

To calculate the dry deposition of gases and aerosols, we utilized the methods of Zhang et al. (2003) and Zhang et al. (2001),

respectively.140

2.2 Input emission data and chemical boundary conditions

The input emission data employed in the model experiments can be categorized into two groups. The first group comprises

biogenic and traditional anthropogenic emissions, which remain consistent across all the model experiments except for POA
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emissions, as will be discussed later. A more comprehensive description of these emissions and their preparation for the model

experiments can be found in Bartík et al. (2024). In summary, anthropogenic emissions outside the territory of the Czech145

Republic were sourced from the CAMS (Copernicus Atmosphere Monitoring Service) European anthropogenic emissions -

Air Pollutants inventory version 4.2 (CAMS-REG-v4.2; Kuenen et al., 2021) for the year 2018. Within the Czech Republic,

we utilized high-resolution emissions from the Register of Emissions and Air Pollution Sources (REZZO – Registr emisí a

zdrojů znečištění ovzduší) for the year 2018, along with emissions from the ATEM Traffic Emissions dataset for the year 2016.

The REZZO emissions were provided by the Czech Hydrometeorological Institute (https://www.chmi.cz), while the ATEM150

dataset was supplied by ATEM (Ateliér ekologických modelů – Studio of Ecological Models; https://www.atem.cz). The raw

anthropogenic emissions were interpolated into the model grid and the temporal disaggregation and speciation were carried

out using the FUME emission preprocessor (Benešová et al., 2018; Belda et al., 2024). BVOC emissions were calculated using

MEGAN version 2.1 (Guenther et al., 2012).

The second group includes IVOC and SVOC emissions from anthropogenic sources. As these emissions are not part of155

the used emission inventories, we estimated them using sector-specific or sector-non-specific parameterizations, which will be

discussed in greater detail in the subsequent subsection.

To force the model experiments at the boundary of the model domain, we employed two distinct sets of chemical boundary

conditions (CBCs). The first set consists of time-space invariant concentrations of the chemical species outlined in Table S1 in

the Supplement. Henceforth, we will refer to this set as the default CBCs. As indicated in Table S1, the number of chemical160

species utilized for the default CBCs varies slightly based on the chosen gas-phase mechanism, which is influenced by their

differing formulations. The second set of CBCs, subsequently referred to as the EAC4 CBCs, was developed using the monthly

averaged fields of the CAMS global reanalysis (EAC4) dataset (Inness et al., 2019). Specifically, we utilized the mean monthly

concentrations of gas-phase and aerosol species listed in Table S2 of the Supplement. This table also details the mapping used

to convert the aerosol species from the EAC4 dataset to those recognized by the CF scheme. It is essential to emphasize that the165

inclusion of both hydrophobic and hydrophilic organic matter in the EAC4 dataset is crucial for the second sensitivity analysis.

The methods for mapping these aerosol species to the OA species recognized by the CF scheme are explained in the following

subsection.

2.3 Sensitivity analyses

2.3.1 First sensitivity analysis170

As we mentioned in the introduction, the aim of the first sensitivity analysis is to examine how estimates of IVOC and POMSV

emissions influence the modeled concentrations of OA, considering various model approaches to gas-phase chemistry and

the chemical and thermodynamic processes associated with OA. To achieve the objective of this sensitivity analysis, we uti-

lized CSwI and CVb and developed four additional experiments, which include CSnI, SSnI, SSwI, and CVa (Table 1). These

experiments can be split into two groups based on the module used to model OA chemistry.175
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Table 1. Model setup (gas-phase chemistry mechanism, OA chemistry module, and additional aging) and the inclusion of IVOC and SVOC

emission estimates in the individual experiments of the first sensitivity analysis. Notes: a The additional aging refers to the aging of SOA

originating from biomass burning and biogenic sources, which is disabled by default in the 1.5-D VBS scheme.

Gas-phase chemistry OA chemistry Addiotional IVOC emission SVOC emission

Experiment mechanism module aginga estimates included estimates included

CSnI CB6r5 SOAP No No No

CSwI CB6r5 SOAP No Yes No

SSnI SAPRC07TC SOAP No No No

SSwI SAPRC07TC SOAP No Yes No

CVb CB6r5 1.5-D VBS No Yes Yes

CVa CB6r5 1.5-D VBS Yes Yes Yes

The first group comprises CSnI, CSwI, SSnI, and SSwI, all utilizing SOAP. At the same time, CB6r5 was applied to model

gas-phase chemistry in CSnI and CSwI, while SAPRC07TC was used for this purpose in SSnI and SSwI. As for IVOC

emissions, both CSwI and SSwI considered them, whereas CSnI and SSnI were conducted without their inclusion. The second

group includes CVb and CVa, in which OA chemistry was modeled using the 1.5-D VBS scheme, the gas-phase chemistry was

modeled using CB6r5, and the identical emission estimates of both IVOC and POMSV were employed. The only difference180

between these two experiments lies in the consideration of the chemical aging of SOA originating from both biogenic emissions

and biomass burning. While CVb did not account for this aging, it was activated in CVa, assuming a reaction rate of 2×10−11

cm3 molecule−1 s−1 for these SOAs with hydroxyl radicals in the gas phase. This reaction rate corresponds with that used for

the chemical aging of anthropogenic SOA (Appendix A).

Regarding the IVOC and POMSV emission estimates used in individual experiments, Table 2 summarizes all the parameter-185

izations applied to calculate them for the respective anthropogenic sources. It is important to note that in all four experiments

utilizing SOAP, we applied POA emissions obtained from the traditional emission databases mentioned earlier. Given that

these POA emissions come from traditional emission inventories, we assumed that they do not account for SVOCs. Therefore,

in both experiments utilizing the 1.5-D VBS scheme, we replaced these POA emission estimates with those for POMSV, which

include missing SVOCs.190

As can be seen in Table 2, we employed the exact IVOC emission estimates in SSwI as those used by Bartík et al. (2024)

in CSwI. Furthermore, in CVa, we applied the identical IVOC and POMSV emission estimates used by Bartík et al. (2024) in

CVb, as previously noted. At the end of this subsection, it is essential to mention that all the experiments detailed here were

realized using the default chemical boundary conditions and thus without considering any aerosols outside the model domain.
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Table 2. Parameterizations of the IVOC and POMSV emission estimates used in the individual experiments of the first sensitivity analysis.

The individual parameterizations were taken from a Giani et al. (2019), b Jiang et al. (2021), c Robinson et al. (2007). NMVOC stands for

non-methane volatile compounds.

Parameterization Gasoline vehicles Diesel vehicles Biomass Other sources

Experiment for (GV) (DV) burning (BB) (OS)

CSnI IVOC 0 0 0 0

CSwI IVOC 0.0397 × NMVOCGV
a 1.2748 × NMVOCDV

a 4.5 × POABB
b 1.5 × POAOS

c

SSnI IVOC 0 0 0 0

SSwI IVOC 0.0397 × NMVOCGV
a 1.2748 × NMVOCDV

a 4.5 × POABB
b 1.5 × POAOS

c

CVb IVOC 0.0397 × NMVOCGV
a 1.2748 × NMVOCDV

a 4.5 × POABB
b 1.5 × POAOS

c

POMSV IVOCGV / 4.62a IVOCDV / 2.54a 3 × POABB
b 3 × POAOS

b

CVa IVOC 0.0397 × NMVOCGV
a 1.2748 × NMVOCDV

a 4.5 × POABB
b 1.5 × POAOS

c

POMSV IVOCGV / 4.62a IVOCDV / 2.54a 3 × POABB
b 3 × POAOS

b

2.3.2 Second sensitivity analysis195

In order to study how the inclusion of OA in the chemical boundary conditions affects its concentrations inside the model

domain, we established CSwI and CVb as two reference experiments since no aerosols were included in their CBCs. Following

this, we conducted three sensitivity experiments for each of the reference experiments, namely Sp0s100, Sp50s50, and Sp100s0

for CSwI and Vp0s100, Vp50s50, and Vp100s0 for CVb. Each of these sensitivity experiments was performed using the same

model setup and IVOC and POMSV parameterizations as in its corresponding reference experiment, except for the chemical200

boundary conditions. In these sensitivity experiments, we used three modifications of the EAC4 CBCs, each differing in the

proportions of POA and SOA within the total OA (Table 3).

We opted for this approach due to the uncertainties involved in mapping OA from the EAC4 dataset to the OA species

recognized by the CF scheme. This mapping was necessary because while the EAC4 dataset provides OA concentrations

categorized into hydrophobic and hydrophilic components, the CF scheme utilizes POA and SOA surrogate species (Table205

S2 in the Supplement). However, since the proportions of POA and SOA in both hydrophobic and hydrophilic OAs were

unknown, we decided to merge both species into the total OA. Next, we considered three scenarios for redistributing the total

OA between POA and SOA. The first two scenarios represented extreme cases: in the first scenario, we treated the total OA

as entirely composed of POA, while in the second scenario, we treated it as consisting wholly of SOA. The third scenario

assumed a 50 percent share of both POA and SOA. Subsequently, we used these scenarios to obtain three pairs of boundary210

conditions for POA and SOA. We then added the same boundary conditions for the remaining remapped aerosol species to

each pair of these boundary conditions, yielding the three modifications of the EAC4 CBCs mentioned above. As we have

indicated in Table 3, the modification prepared using the first scenario was used in Sp100s0 and Vp100s0, the modification
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Table 3. Percentage share of POA and SOA in the total OA at the boundary of the model domain in the individual experiments of the second

sensitivity analysis.

Experiment POA SOA

CSwI 0 % 0 %

Sp0s100 0 % 100 %

Sp50s50 50 % 50 %

Sp100s0 100 % 0 %

CVb 0 % 0 %

Vp0s100 0 % 100 %

Vp50s50 50 % 50 %

Vp100s0 100 % 0 %

prepared using the second scenario was used in Sp0s100 and Vp0s100, and the modification prepared using the third scenario

was used in Sp50s50 and Vp50s50.215

Another challenge we encountered was determining how to redistribute POA and SOA within the EAC4 CBC modifications

to their respective surrogate species utilized in both SOAP and the 1.5-D VBS scheme. To address this issue, we established two

simplifying assumptions regarding the shares of the surrogate species in POA and SOA at the boundary of the model domain.

First, we assumed that these shares are spatially invariant and only change seasonally. Second, we set the seasonal shares of the

individual surrogate species in SOA at the boundary of the model domain equal to the domain-averaged mean seasonal shares220

of the corresponding surrogate species’ concentrations to SOA concentration in the reference experiments, and we proceeded

analogously for the surrogate species of POA. Subsequently, we used these seasonal shares as factors to redistribute POA and

SOA within all three modifications of boundary conditions. Table S3 in the Supplement shows the factors utilized to redistribute

SOA to the surrogate species used in SOAP. Tables S4 and S5 in the Supplement offer the factors employed to redistribute

POA and SOA to their surrogate species used in the 1.5-D VBS scheme.225

2.4 Validation

We conducted a detailed validation of both CSwI and CVb in our previous study (Bartík et al., 2024). This validation included

an assessment of modeled predictions against measurements for fine particulate matter (PM2.5) and its components (ammo-

nium, nitrates, sulfates, elemental carbon, and organic carbon), nitrogen dioxide, and sulfur dioxide. Consequently, our focus

here was solely on evaluating the modeled OA concentrations within the individual model experiments of both sensitivity230

studies. For this evaluation, we utilized organic carbon (OC) measurements collected at stations in the Czech Republic (Table

S6 in the Supplement), which covered at least part of the modeled period of 2018 and 2019. Some of these measurements were

obtained during two specific measuring campaigns, while the remainder were collected at the Prague–Suchdol and Košetice

stations.
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The first campaign was conducted at the Kosmos, Ropice, and Vrchy stations in the northeastern part of the Czech Republic,235

specifically in the Třinecko area (Seibert et al., 2020). The second campaign took place at the Švermov, Libušín, and Zbečno

stations, located in Central Bohemia, specifically within the Kladensko area (Seibert et al., 2021). Both campaigns were divided

into winter and summer phases, the schedules of which can be found in Table S6 in the Supplement. During both campaigns,

individual OC samples were continuously collected over 12 hours using sampling streams and collection heads to ensure

representative sampling of the PM2.5 fraction. Subsequently, the mean 12-hour OC concentrations were determined from the240

collected samples. For validation purposes, we further derived mean daily OC concentrations from the mean 12-hour OC

concentrations. Concurrently, air temperature, wind speed, and relative humidity were measured at the sampling stations,

allowing us to determine their mean daily values and validate these meteorological variables as well. The data from both

campaigns were provided by the Czech Hydrometeorological Institute (https://www.chmi.cz).

The collection of PM10 (particulate matter with a diameter ≤ 10 µm) samples at the Prague–Suchdol station took place245

every fourth day for 24 h from 2 January to 30 May 2018. The samples were collected on prebaked (3 h, 800 ◦C) quartz fiber

filters (Tissuequartz, Pall, 47 mm) using a Leckel sampler (Leckel GmbH, Germany). The filter cuts were analyzed for OC

concentrations by a thermal-optical carbon analyzer (Sunset Laboratory Inc., USA) using the shortened EUSAAR2 protocol

(Cavalli et al., 2010). The resulting mean daily OC concentrations were corrected to blank.

The measurements of OC at the Košetice station in the Vysočina Region during the modeled period were obtained from the250

EBAS database (https://ebas-data.nilu.no/default.aspx). These measurements represent OC within the PM2.5 fraction and were

taken at 4-hour intervals. For validation purposes, we derived mean daily OC concentrations from them.

In order to validate the modeled air temperature, wind speed, and air humidity for these two stations, the Czech Hydrom-

eteorological Institute provided us with measurements of the mentioned quantities directly from the Košetice station and the

Prague–Kbely station. We chose the Prague–Kbely station as a representative site for the Prague–Suchdol station, where me-255

teorological variables were not directly measured.

The modeled mean daily OC concentrations were compared with their corresponding measured values using several sta-

tistical measures, including the mean bias (MB), root mean square error (RMSE), normalized mean square error (NMSE),

index of agreement (IOA), and fraction of predictions within a factor of two of observations (FAC2). The definitions of these

statistical measures can be found in Eq. (S1)–(S5) in the Supplement. In order to assess the modeled and measured mean daily260

air temperatures, wind speeds, and relative humidities, we employed MB, RMSE, NMSE, and IOA. For this assessment, we

exclusively used the mean daily values of the mentioned meteorological variables from the days when the OC measurements

were carried out.

3 Results and discussion

3.1 Validation of meteorological variables265

Figure S1 in the Supplement compares the observed and modeled mean daily temperatures, wind speeds, and relative humidi-

ties at the Prague–Kbely and Košetice stations across the individual seasons. Figure S2 in the Supplement provides similar
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comparisons at the stations utilized in both campaigns during their winter and summer phases. Our focus here is on the differ-

ences between the modeled and observed daily means of these meteorological variables. Figure 2 depicts these differences at

the Prague–Kbely and Košetice stations throughout the respective seasons. Figure 3 illustrates these differences at the stations270

involved in both campaigns during their winter and summer phases. Additionally, Table S7 in the Supplement summarizes the

statistical comparison of the modeled and observed daily means of these meteorological variables at all the stations.

The WRF model generally tends to slightly underestimate the mean daily temperatures, typically up to 1.5 K (Figs. 2a, b

and 3a–d). An exception to this trend is observed at the Prague–Kbely station, where the model slightly overestimates the mean

daily temperatures (Fig. 2b). The maximum differences in the mean daily temperatures only exceptionally exceeded 4 K (Fig.275

3d). The NMSEs for the mean daily temperatures reached the lowest values (mainly below 5×10−3 %) among all the NMSEs

evaluated. At the same time, the IOAs for the mean daily temperatures achieved the highest values (mostly above 0.9) among

all the IOAs assessed.

Regarding the mean daily wind speeds, the model typically tends to overestimate them more or less (Figs.2c, d and 3e–h),

except for the Prague–Kbely station (Fig. 2d). At the Prague–Kbely and Košetice stations, the model showed a reasonable280

accuracy of their predictions in all the seasons, with IOAs exceeding 0.85 and NMSEs mostly below 10 %. In contrast, at the

stations involved in both campaigns, the model overestimated them during both phases (MB = 3.2–4.3 m s−1 in the winter

phases and MB = 1.1–2.2 m s−1 in the summer phases). At the same time, IOAs ranged from 0.1 to 0.54 and NMSEs between

29 % and 1320 %.

Figures 2e, f and 3i–l demonstrate that the model somewhat underestimates the mean daily relative humidities at most of285

the stations, usually up to 9.5 %. At the same time, the maximum differences in the daily relative humidities only sporadically

Figure 2. Differences between the modeled and observed mean daily air temperatures (in K) (a, b), wind speeds (in m s−1) (c, d), and relative

humidities (in %) (e, f) at the Košetice station (a, c, e) during the winter (DJF), spring (MAM), summer (JJA), and autumn (SON) seasons of

2018 and 2019 and at the Prague–Kbely station (b, d, f) during January and February (JF) 2018 and the spring of 2018. The differences are

shown in the form of box plots, the components of which are described in Fig. S3 in the Supplement. Blue dotted lines indicate the levels of

zero differences.
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Figure 3. Differences between the modeled and observed mean daily air temperatures (in K) (a–d), wind speeds (in m s−1) (e–h), and relative

humidities (in %) (i–j) at the Kosmos, Ropice, and Vrchy stations in the Třinecko area during the winter (a, e, i) and summer (c, g, k) phase

of the campaign and at the Švermov, Libušín, and Zbečno stations in the Kladensko area during the winter (b, f, j) and summer (d, h, l) phase

of the campaign.

exceeded 20 %. The IOAs for the mean daily relative humidities exceeded 0.7 at most of the stations, while the NMSEs ranged

between 0.5 % and 3.6%.

The overestimation of wind speed by the WRF model over the Central European domain with the same or similar horizontal

resolution that we employed, especially in the winter months, was also pointed out in several papers (Huszar et al., 2020;290

Karlický et al., 2020; Liaskoni et al., 2023; Bartík et al., 2024). This overestimation could be one of the sources of underes-

timating OA concentrations in all the experiments analyzed here. Aksoyoglu et al. (2011) showed that the reduced modeled

wind speeds during observed periods of low wind can increase PM2.5 concentrations by a factor of 2–3. Since OA usually

forms a significant part of PM2.5, it can be assumed that similar increases also occur in OA concentrations under the mentioned

conditions.295

To further clarify the possible causes of the more substantial model overestimation of the mean daily wind speeds at the

stations in the Kladensko area (Figs. 3f, h and S2f, h), we compared both the modeled and observed values of these wind speeds

at the three stations with the corresponding wind speeds measured at four professional meteorological stations in Prague in

Fig. S4. As can be seen, the modeled wind speeds at the stations in the Kladensko area are more accurately represented by the

Prague stations, located approximately 15–45 km away, than by the local stations themselves. This finding suggests that the300

campaign’s stations were placed in locations where the wind field was more substantially influenced by nearby obstacles, such

as buildings and trees, and/or by the contours of the surrounding terrain. These same factors likely contributed to the more
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notable model overestimation of the mean daily wind speeds at some of the stations in the Třinecko area (Figs. 3e, g and S2e,

g).

3.2 Sensitivity on SOA module and IVOC/POMSV emissions305

In this subsection, we present and discuss the spatial distributions of the mean seasonal impacts on the concentrations of POA

and SOA in the individual experiments of the first sensitivity analysis. Specifically, we focus on these impacts during the

winters and summers of 2018–2019. We define these impacts in a specific experiment by the differences between the mean

seasonal concentrations in this experiment and their corresponding values in the reference experiment. Before analyzing the

mean seasonal impacts on the concentrations of a specific OA, we first outline the spatial distributions of the mean seasonal310

concentrations of this OA in the reference experiment. For this sensitivity study, we selected CSnI as the reference experiment

since it was conducted without any additional emissions of IVOCs and SVOCs. Following this, we evaluate the organic carbon

(OC) concentrations obtained from the individual experiments of this sensitivity analysis.

3.2.1 Spatial distributions of POA and SOA

The spatial distributions of the mean seasonal POA concentrations in the reference experiment during the winters and summers315

are depicted in Figs. 4a and b, respectively. The mean winter POA concentrations usually range between 0.1–9 µg m−3, with

the highest values reaching in the Po Valley (Italy) and some areas of the Czech Republic and Poland. In contrast, the mean

summer POA concentrations mostly reach up to 0.3–0.5 µg m−3, except for the area of the Po Valley, where they reach up to

1.5 µg m−3.

Regarding the mean seasonal impacts on POA concentrations, Figs. 4c and d show their spatial distributions during the320

winters and summers, respectively. Additionally, the values of the domain-averaged mean seasonal impacts on POA concentra-

tions are provided in Table S8 in the Supplement. The distributions of the mean seasonal POA concentrations in CSwI, SSnI,

and SSwI are practically identical to those in CSnI in both seasons, leading to the negligible mean seasonal impacts on POA

concentrations in these experiments. However, this is an expected result since the same POA emissions were used in all these

experiments, and POA is not affected by the choice of gas-phase mechanisms and the addition of IVOC emissions when using325

SOAP. On the other hand, the addition of the SVOC emissions in CVb and CVa causes an increase in the mean seasonal POA

concentrations over the entire domain in both seasons, resulting in positive mean seasonal impacts. The spatial distributions

of the mean seasonal impacts in both experiments are similar to the mean seasonal POA concentrations in CSnI during both

seasons. These similarities result from the scaling of SVOC emissions using both POA for most anthropogenic sources and

NMVOC emissions for diesel and gasoline vehicles, which have similar spatial distributions to POA emissions from both types330

of vehicles. The most significant impacts in both experiments are observed in the Po Valley during both seasons, with the mean

winter impacts reaching up to 10 µg m−3 and the mean summer impacts reaching up to 1 µg m−3. The comparison of the

domain-averaged seasonal impacts in these two experiments shows that the mean seasonal POA concentrations increase on

average across the entire domain in CVa by 0.02 µg m−3 in both seasons. This observed increase could be attributed to the fact
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Figure 4. Mean seasonal POA concentration (in µg m−3) in the reference experiment of the first sensitivity analysis (CSnI) during the winter

(a) and summer (b) seasons of 2018 and 2019. The difference between the mean seasonal POA concentration predicted in the individual

experiments of the first sensitivity analysis and its counterpart in the CSnI experiment (in µg m−3) during the winter (c) and summer (d)

seasons of 2018 and 2019.

that the additional aging of SOA gradually contributes to higher concentrations of the total OA, which subsequently shifts the335

thermodynamic equilibrium in the redistribution of POMSV between the gas and aerosol phase toward the aerosol phase.

Figures 5a and b illustrate the spatial distributions of the mean seasonal SOA concentrations in the reference experiment

during the winters and summers, respectively. The mean winter SOA concentrations in most of the territory of the domain
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reach up to 0.2–0.3 µg m−3. In contrast, the mean summer SOA concentrations range between 0.6–1.6 µg m−3 over most of

the domain, with the highest values occurring in the southern areas of the Pannonian Basin and southern Germany.340

As for the mean seasonal impacts on SOA concentrations, Figs. 5c and d show their spatial distributions during the winters

and summers, respectively. Furthermore, Table S8 includes the values of the domain-averaged mean seasonal impacts on SOA

concentrations (∆SOA). The distributions of the mean seasonal impacts in SSnI indicate that changing the mechanisms of

gas-phase chemistry is almost not reflected in the mean winter SOA concentrations except for the central area of the Po Valley

Figure 5. Same as Fig. 4 but for SOA.
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(∆SOA = 0 µg m−3), while it causes a decrease in the mean summer SOA concentrations in most areas of the domain by 0.1–345

0.15 µg m−3 (∆SOA = -0.07 µg m−3). The addition of the IVOC emissions in CSwI and SSwI is manifested by the positive

mean winter impacts over the entire domain, which are somewhat more pronounced in CSwI (∆SOA = 0.17 µg m−3) than

in SSwI (∆SOA = 0.12 µg m−3). On the other hand, even adding the IVOC emissions in SSwI during the summer seasons

does not cause positive mean seasonal impacts over the whole domain (∆SOA = -0.01 µg m−3), which is not the case in CSwI

(∆SOA = 0.09 µg m−3). The simultaneous addition of the IVOC and SVOC emissions in CVb leads to a further increase in the350

mean seasonal impacts during both the winters (∆SOA = 0.49 µg m−3) and the summers (∆SOA = 0.58 µg m−3). Moreover,

the additional aging of SOA in CVa raises the mean seasonal impacts even more during the winters (∆SOA = 0.62 µg m−3) and

especially in the summers (∆SOA = 1.17 µg m−3), resulting in the highest overall seasonal impacts among all the experiments

examined in this sensitivity analysis. During the winters, the areas with the greater impacts in CVa include the Czech Republic

and the Pannonian Basin, where the impacts reach 0.75–2 µg m−3. The highest impacts, reaching up to 4 µg m−3, occur in the355

Po Valley. During the summers, the areas with the higher impacts include the Czech Republic, southern Germany and Poland,

northern Austria, and the Pannonian Basin, where they reach 1.25–2.5 µg m−3. Again, the Po Valley experiences the highest

impacts, with values reaching up to 3.5 µg m−3.

Several recent studies have been devoted to modeling the influence of IVOC and SVOC emissions on OA concentrations

over Central Europe using the CAMx model. Meroni et al. (2017) modeled OA in the Po Valley area on a domain with a360

horizontal resolution of 5 km× 5 km for the period of February 2013, and in one of the experiments, he used SOAP to control

OA chemistry. Taking into account the differences in the emission inventories, spatial resolution, and period, the distribution

of the mean monthly POA concentration in this experiment is qualitatively and quantitatively similar to the distribution of the

mean seasonal POA concentration in CSwI. In contrast, the mean monthly SOA concentrations modeled by them, reaching a

maximum of 0.3 µg m−3, are smaller than the mean seasonal SOA concentrations in CSwI. This discrepancy may stem, in part,365

from their estimate of IVOC from all emission sectors as 1.5 × POA, based on the parameterization proposed by Robinson

et al. (2007). For instance, IVOC emissions from biomass burning, which dominate total IVOC emissions during winter, were

presumably significantly underestimated in their experiment compared to our estimate of these emissions (4.5 × POA).

Ciarelli et al. (2017) used a modified version of the 1.5-D VBS scheme to model OA over the European domain with a

horizontal resolution of 0.25◦× 0.25◦ for the period between 25 February and 26 March 2009. To estimate the emissions of370

IVOCs and POMSV, they used parameterizations that align closely with those used in CVa. When considering the same aspects

as in the previous comparison, it is evident that the modeled distributions of the mean concentrations of POA and SOA in

their experiment show qualitative similarities to the mean winter concentrations of POA and SOA observed in CVa. The main

quantitative differences between the distributions of the mean POA concentrations could be attributed to the use of different

emission inventories. It is important to emphasize here that our assumption about not including SVOC emissions in the emission375

inventories is only partially accurate. As noted by Kuenen et al. (2022), PM2.5 emissions from small residential combustion,

as reported in CAMS-REG-v4.2, include SVOC emissions for specific European countries. Italy is one such country, which

suggests that the POMSV estimates provided in CVb and CVa likely led to an overestimation of POA over its territory. This

overestimation, in turn, has naturally influenced (increased) SOA levels in this region, especially during the winter months.
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However, it is crucial to note that CAMS-REG-v4.2 does not account for SVOC emissions from Central European countries,380

just as REZZO does not include them for the Czech Republic, thus justifying the use of POMSV estimates in CVb and CVa.

Jiang et al. (2021) modeled OA over the European domain with a horizontal resolution of 0.25◦× 0.125◦ for the year

2011. Among the five experiments they performed, the SOAP and VBS_3POA experiments are the most similar to CSwI and

CVb, respectively, in terms of setting the OA chemistry module and the IVOC and POMSV parameterizations used. When

examining the distributions of the mean winter and summer POA concentrations in the SOAP and VBS_3POA experiments,385

a qualitative similarity can be observed with the corresponding distributions in CSwI and CVb. The quantitative differences

between these distributions can be attributed to the use of different emission inventories since Jiang et al. (2021) employed

the emission inventory TNO_MACC-III (Kuenen et al., 2014), the predecessor of CAMS-REG-v4.2 that does not account for

SVOC emissions. The more apparent differences in the mean winter POA concentrations between CVb and VBS_3POA over

Italy could be ascribed mainly to the above-mentioned overestimation of POA in CVb over this area. The distributions of the390

mean winter and summer SOA concentrations in the SOAP and VBS_3POA experiments exhibit distinct patterns compared to

those in CSwI and CVb, particularly over some regions in Germany, Poland, and the Czech Republic. These differences, which

can reach up to about 2–3 µg m−3 during both seasons, could be mainly caused by the use of different amounts of biogenic

emissions, especially monoterpene emissions. To substantiate this claim, it is noteworthy that Jiang et al. (2021) utilized the PSI

model developed at the Laboratory of Atmospheric Chemistry of the Paul Scherrer Institute (Andreani-Aksoyoglu and Keller,395

1995; Oderbolz et al., 2013; Jiang et al., 2019a) to estimate biogenic emissions. Furthermore, Jiang et al. (2019a) demonstrated

that the biogenic emissions, particularly monoterpene emissions, estimated by the PSI model result in substantially higher

SOA production than the biogenic emissions derived from the MEGAN model. Notably, the regions with the most pronounced

differences in SOA production include, among others, the mentioned regions of Central Europe.

3.2.2 Comparison with measurements400

Figure S5 in the Supplement compares the observed and modeled mean daily OC concentrations at the Prague–Suchdol and

Košetice stations during the individual seasons. Figure S6 in the Supplement presents these comparisons at the stations utilized

in both campaigns during their winter and summer phases. Figure 6 depicts the differences between the modeled and observed

mean daily OC concentrations at the Prague–Suchdol and Košetice stations in the individual seasons. Figure 7 illustrates these

differences at the stations utilized in both campaigns during their winter and summer phases. Table S9 in the Supplement offers405

the statistical comparison of the modeled and observed mean daily OC concentrations at the Prague–Suchdol and Košetice

stations, while Table S10 in the Supplement provides the same statistical analysis for the stations utilized in both campaigns.

All these figures and the MB values in both tables indicate that the model in all the experiments generally more or less

underestimates the daily OC concentrations at all the stations during all the periods of comparison. At the same time, several

qualitative similarities can be seen in all these comparisons. First, CSnI and SSnI typically underestimate these concentrations410

similarly, with slightly more pronounced differences during the summer. Second, CSwI and SSwI tend to underestimate these

concentrations similarly, again with slightly more pronounced differences in the summer. Additionally, they underestimate the

concentrations slightly less than their corresponding experiments without additional IVOC emissions (i.e., CSnI and SSnI,
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Figure 6. Differences between the modeled and observed mean daily OC concentrations at the Košetice station during the winter (a), spring

(b), summer (c), and autumn (d) seasons of 2018 and 2019 and at the Prague–Suchdol station during January and February 2018 (e) and the

spring of 2018 (f). The differences for all the model experiments of the first sensitivity analysis are depicted.

Figure 7. Differences between the modeled and observed mean daily OC concentrations at the Kosmos, Ropice, and Vrchy stations in the

Třinecko area during the winter (a–c) and summer (g–i) phase of the campaign and at the Švermov, Libušín, and Zbečno stations in the

Kladensko area during the winter (d–f) and summer (j–l) phase of the campaign. The differences for all the model experiments of the first

sensitivity analysis are depicted.

respectively). Third, CVb underestimates these concentrations even less than CSwI and SSwI. Finally, CVa underestimates

them even less than CVb, especially in the summer. This trend aligns with the seasonal distributions of POA and SOA described415
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above. Moreover, Tables S4 and S6 show a similar pattern of improving the model predictions of the daily OC concentrations

in these experiments in terms of all the other statistical measures used.

The values of all the statistical metrics used further demonstrate that the quality of the prediction of these concentrations is

influenced by both the location within the domain and the period. The values of NMSE, IOA, and FAC2 at the stations used in

both campaigns (Table S10) indicate a better prediction in all the experiments during the winter phases (NMSE = 84.2—447.2420

%, IOA = 0.46—0.58, FAC2 = 12.9—68.6 %) than in the summer phases (NMSE = 114.2—653.8 %, IOA = 0.36—0.49, FAC2

= 0—31 %). At the same time, they show that the winter phases are slightly better predicted in the Kladensko area, while the

summer phases are slightly better predicted in the Třinecko area. However, it is worth noting the FAC2 values determined even

for the best-predicting experiment (CVa) are very low (0–31 %) during the summer phases at all these stations.

The values of all the statistical metrics indicate that the model predictions of the mean daily OC concentrations at the Prague–425

Suchdol (NMSE = 33.2–82.4 %, IOA = 0.63–0.78, FAC2 = 60–86.7 %) and Košetice (NMSE = 21.5–59 %, IOA = 0.63–0.85,

FAC2 = 64.2–83.8 %) stations (Table S9) are considerably more accurate in all the experiments during the winter seasons than

those at the stations in the Kladensko and Třinecko areas during their winter phases. These findings could be partly explained

by the more pronounced differences between the modeled and measured wind speeds at the campaign stations. During the

summer seasons, a similar conclusion to the one mentioned above applies for the Košetice station (NMSE = 48.1–240.4 %,430

IOA = 0.38–0.53, FAC2 = 0–61.8 %), especially in CVb and CVa. In order to make similar comparisons over the identical

periods, we calculated all the metrics for the Košetice station corresponding to the periods of the individual phases of both

campaigns, except for the summer phase in the Třinecko area due to missing data (Table S9). The comparisons of these metrics

with those determined for the stations in both campaigns (Table S10) lead to the same conclusions that we stated above.

The comparison of NMSE, IOA, and FAC2 at the Prague–Suchdol station shows that the predictions of the mean daily435

OC concentrations in all the experiments are more accurate during the winter season than during the spring season (NMSE

= 56.4–153.0 %, IOA = 0.38–0.50, FAC2 = 47.8–65.2 %). Similar comparisons at the Košetice station also show that these

concentrations are best predicted in all the experiments during the winter seasons. In contrast, they are predominantly predicted

least accurately at this station during the summer seasons.

Finally, taking into account the values of all the mentioned statistical measures at all the stations considered here, as well440

as all the distributions of differences between the modeled and observed mean daily OC concentrations, we can state that

daily OC concentrations are most accurately modeled in CVa, followed by CVb. In other words, the best modeled daily OC

concentrations, although still underestimated, were achieved by simultaneously supplying estimates of both IVOC and SVOC

emissions to the simulation in which OA chemistry was handled by the 1.5-D VBS scheme with activated aging processes of

POA and SOA from all anthropogenic sources as well as SOA from biogenic sources.445

3.3 Sensitivity on chemical boundary conditions

To present and discuss the results of this sensitivity analysis, we adopt a similar approach to that utilized for the previous

sensitivity study. Thus, we first investigate the spatial distributions of the mean seasonal impacts on the concentrations of POA

and SOA in the experiments of this sensitivity analysis during both seasons, using the same definition of these impacts as in
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the first sensitivity study. Subsequently, we evaluate the OC concentrations obtained from the individual experiments of this450

sensitivity analysis.

3.3.1 Spatial distributions of POA and SOA

Figures 8a and b show the spatial distributions of the mean seasonal concentrations of POA in both reference experiments

(CSwI and CVb) during the winters and summers, respectively. As we showed in the first sensitivity analysis, these distributions

in CSwI are almost identical to those in CSnI during both seasons (Figs. 4a and b). At the same time, the distributions in CVb455

exhibit similar spatial patterns to those in CSwI during both seasons, but they differ in magnitude. Specifically, the highest

mean seasonal POA concentrations in CSwI reach up to 9 µg m−3 during the winters and up to 1.5 µg m−3 during the summers,

whereas in CVb, these concentrations peak at 19 µg m−3 during the winters and 2.2 µg m−3 during the summers.

Figures 8c and d illustrate the spatial distributions of the mean seasonal impacts on POA concentrations during the winters

and summers, respectively. Moreover, Table S8 includes the values of the domain-averaged mean seasonal impacts on POA460

concentrations (∆POA). When OA is represented as SOA at the boundaries of the model domain, the mean seasonal impacts

on POA concentrations in Sp0s100 are minor in both seasons. In Vp0s100, these impacts during both seasons typically reach

values up to 0.25 µg m−3, with somewhat more pronounced effects observed in the winters. This phenomenon may be attributed

to the SOA supplied, which likely shifts the thermodynamic balance in the redistribution of POMSV between the gas and aerosol

phases toward the aerosol phase. The subsequent increase in the share of POA in OA at the boundaries of the model domain465

in Sp50s50 and Sp100s0 (and analogously in Vp50s50 and Vp100s0) is manifested by a gradual rise in the mean seasonal

impacts across the entire model domain during both seasons. The spatial distributions of the mean winter impacts in these

model experiments feature asymmetric gradients predominantly oriented from the Alps toward the western, southern, and

eastern boundaries. These gradients are further influenced locally by other mountain ranges, such as the High Tatras. The

spatial distribution of the mean summer impacts exhibits a similar structure, with pronounced gradients extending toward all470

domain boundaries. As can be seen from the shape of these distributions and the values of ∆POA, the increase in the mean

seasonal impacts during both seasons is consistently higher in the experiments in which SOAP handles OA chemistry. This

phenomenon can be attributed to the fact that in Vp50s50 and Vp100s0, a portion of POA evaporates into the gas phase, a

process that does not occur in Sp50s50 and Sp100s0. The mean seasonal impacts and their domain-averaged values in both

Sp50s50 and Vp50s50 are higher during the summer seasons (∆POA = 1.71 and 1.29 µg m−3, respectively) than in the winter475

seasons (∆POA = 0.69 and 0.63 µg m−3, respectively). Similarly, the mean seasonal impacts and their domain-averaged values

in both Sp100s0 and Vp100s0 are also higher during the summer seasons (∆POA = 3.45 and 3.10 µg m−3, respectively) than

in the winter seasons (∆POA = 1.37 and 1.17 µg m−3, respectively).

The spatial distributions of the mean seasonal concentrations of SOA in both reference experiments during the winters and

summers are depicted in Figs. 9a and b, respectively. Similar to the spatial distributions of the mean winter POA concentrations,480

the mean winter SOA concentrations exhibit a similar spatial pattern in both experiments; however, they differ in magnitudes.

While these concentrations usually range between 0.1–1.25 µg m−3 in CSwI, they vary between 0.2–3.75 µg m−3 in CVb. In

contrast, the spatial distributions of the mean summer SOA concentrations in both experiments differ not only in size but also
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in the geographical locations of the areas with the highest values. In CSwI, the mean summer SOA concentrations typically

range between 0.4–1.75 µg m−3, with the highest values being reached mainly in the southern area of the Pannonian Basin. In485

CVb, these concentrations usually vary between 0.8–3.5 µg m−3, with the highest values found in the Po Valley and southern

Germany.

Figure 8. Mean seasonal POA concentration (in µg m−3) in the reference experiments of the second sensitivity analysis (CSwI and Cvb)

during the winter (a) and summer (b) seasons of 2018 and 2019. The difference between the mean seasonal POA concentration predicted in

the individual experiments of the second sensitivity analysis and its counterpart in the corresponding reference (CSwI or Cvb) experiment

(in µg m−3) during the winter (c) and summer (d) seasons of 2018 and 2019.
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Figure 9. Same as Fig. 8 but for SOA.

Finally, as for the mean seasonal impacts on SOA concentrations, Figs. 9c and d show their spatial distributions during the

winters and summers, respectively. Furthermore, the values of the domain-averaged mean seasonal impacts on SOA concen-

trations are provided in Table S8 in the Supplement. When OA is represented as POA at the boundaries of the model domain,490

the mean winter impacts in Sp100s0 are negative, decreasing to -0.1 µg m−3. In Vp100s0, they are also negative above most

of the domain, dropping to -0.18 µg m−3. On the contrary, the mean summer impacts in Sp100s0 are positive, reaching up

to 0.5 µg m−3. In Vp100s0, except for the Alps and High Tatras, they are similarly positive, reaching up to 0.5 µg m−3. The

observed impacts in these simulations are likely linked to changes in other pollutant(s) at the boundaries of the model domain,
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which influence SOA chemistry. The spatial distributions of the mean seasonal impacts on SOA concentrations in Sp50s50 and495

Sp0s100 (and similarly in Vp50s50 and Vp0s100) exhibit structures akin to those observed for the mean seasonal impacts on

POA concentrations in Sp50s50 and Sp100s0 (and likewise in Vp50s50 and Vp50s000) (Figs. 8c and d) during both seasons.

The patterns of these distributions, along with the values of ∆SOA, indicate that the increase in the mean seasonal impacts as

the proportion of SOA in OA at boundaries increases is consistently higher during both seasons in experiments where SOAP

handles OA chemistry. This phenomenon is presumably also conditioned by the fact that a portion of POA evaporates in500

Vp50s50 and Vp0s100, which does not occur in Sp50s50 and Sp0s100. The mean seasonal impacts and their domain-averaged

values in both Sp50s50 and Vp50s50 are higher in the summers (∆SOA = 1.22 and 1.15 µg m−3, respectively) than in the

winters (∆SOA = 0.55 and 0.41 µg m−3, respectively). Similarly, the mean seasonal impacts and their domain-averaged values

in both Sp0s100 and Vp0s100 are also higher in the summers (∆SOA = 2.27 and 2.03 µg m−3, respectively) than in the winters

(∆SOA = 1.15 and 0.83 µg m−3, respectively).505

3.3.2 Comparison with measurements

The observed and modeled mean daily OC concentrations at the Prague–Suchdol and Košetice stations in the individual seasons

are compared in Fig. S7 in the Supplement. Figure S8 in the Supplement shows these comparisons at the stations employed in

both campaigns during their winter and summer phases. Figure 10 depicts the differences between the modeled and observed

mean daily OC concentrations at the Prague–Suchdol and Košetice stations in the individual seasons. Figure 11 illustrates these510

differences at the stations utilized in both campaigns during their winter and summer phases. The statistical comparison of the

modeled and observed mean daily OC concentrations at the Prague–Suchdol and Košetice stations is provided in Table S11.

Tables S12 and S13 in the Supplement supply the same statistical analysis for the stations utilized in both campaigns.

All these figures and the MB values in the tables show the detected underestimations of the mean daily OC concentrations

in both reference experiments, which we discussed in Sect. 3.2.2. At the same time, they demonstrate that incorporating OA515

into the chemical boundary conditions reduces these underestimations at all the stations during all the periods, resulting in

Figure 10. Same as Fig. 6 but for the experiments of the second sensitivity analysis.
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Figure 11. Same as Fig. 7 but for the experiments of the second sensitivity analysis.

enhanced model predictions of the analyzed concentrations. The magnitude of these reductions consistently increases with the

increase in the share of POA in OA at the boundaries of the model domain. Moreover, in some cases, this incorporation even

leads to slight overestimations of the mean daily OC concentrations, e.g., at the Košetice station in (1) Vp0s100, Vp50s50, and

Vp100s0 during the winter seasons (Figs. 10a and S7a, Table S11) and (2) Sp100s0 and Vp100s0 during the summer seasons520

(Figs. 10c and S7c, Table S11).

Tables S11-13 further indicate that with the increase in the share of POA in OA at the boundaries of the model domain,

there is always a gradual improvement of all the statistical metrics investigated at all the stations. This trend aligns with

expectations, at least during the winter and summer seasons (phases), given the underestimations of the analyzed concentrations

in the reference experiments and the trends in the spatial distributions of OA (Fig. S9 in the Supplement), the components of525

which we detailed in the previous subsection. The FAC2 values reveal that the most pronounced improvements in the modeled

concentrations occur mainly during the summer seasons, especially at the stations in the Kladensko area and at the Košetice

station. Concretely, the FAC2 at the stations in the Kladensko area improved from 0–3.3 % to 50–100 %, while at the Košetice

station, the FAC2 increased from 0–16.7 % to 59.8–92.2 %.

4 Conclusions530

This study provides, in the form of two sensitivity analyses, a comprehensive examination of the modeling of organic aerosols

over Central Europe, focusing on the roles of IVOC and SVOC emissions and chemical boundary conditions. The first sensi-
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tivity analysis demonstrated that source-specific and non-source-specific estimates of IVOC and SVOC emissions substantially

affect the modeled concentrations of both POA and SOA. A comparison of modeled daily OC concentrations with measure-

ments at stations in the Czech Republic showed that the model best reproduces these concentrations in the case when the OA535

chemistry is controlled by the 1.5-D VBS scheme with activated aging processes of POA and SOA from all anthropogenic

sources as well as SOA from biogenic sources. This finding is due to the fact that the model at this setting most significantly

reduces the underestimation of OC, which is present in all experiments of this sensitivity analysis. Additionally, the comparison

indicated that the model predicts the daily OC concentrations more accurately in winter than in summer, with the accuracy of

the predictions varying by station location.540

The second sensitivity analysis provided valuable insights into the contributions of OA sources from around Central Europe

to the concentrations of OA, POA, and SOA in this region, or rather about the uncertainties of these contributions due to the

lack of knowledge of the share of POA (or SOA) in OA at the edges of the model domain. A comparison of modeled daily OC

concentrations with measurements at stations in the Czech Republic showed that incorporating OA into the chemical boundary

conditions improves model predictions at all the stations. At the same time, the rate of this improvement increases with the545

growing share of POA in OA at the boundaries of the model domain. In terms of FAC2, the most pronounced improvements in

the modeled OC concentrations occur mainly during the summer seasons, which points to the essential influence of OA from

the boundaries of the model domain, especially during this season.

In the study, we have identified several shortcomings that we will address in future research. For instance, it is necessary

to increase the temporal resolution of chemical boundary conditions and, ideally, to use those that directly contain POA and550

SOA concentrations. Further, it is important to substantially increase the horizontal resolution of the domain, which could help

reduce wind speed overestimations. It is also essential to consider the uncertainties of many factors, such as source-specific

parameterizations for IVOC and SVOC emission estimates, volatility distributions of SVOC emissions, rate constants of aging

processes, or the emissions of BVOCs.

Appendix A: SOAP and 1.5-D VBS555

Here, we briefly describe both modules that govern the OA chemistry in CAMx version 7.10. More information can be found

in Ramboll (2020).

SOAP version 2.2 treats POA using the traditional assumptions mentioned in the introduction; thus, it considers POA to

be a single non-volatile species that does not evolve chemically. Further, it considers the oxidation of four anthropogenic

gaseous species (benzene, toluene, xylene, and anthropogenic IVOC) to form two condensable gas (CG) species (more-volatile560

and less-volatile) and one non-volatile species in the aerosol phase. Similarly, the oxidation of three biogenic volatile organic

compounds (BVOCs) (isoprene, monoterpenes, and sesquiterpenes) is considered to form two CG species (more-volatile and

less-volatile) and one non-volatile species; however, these species are different from those created from the anthropogenic

precursors. At the same time, the more-volatile and less-volatile CG species resulting from both anthropogenic and biogenic
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precursors are redistributed between the gas and aerosol phases following the pseudo-ideal solution theory (Strader et al.,565

1999).

The 1.5-D VBS scheme uses five basis sets to represent different degrees of oxidation in ambient OA: three basis sets for

freshly emitted OA (originating from meat cooking, other anthropogenic sources, and biomass burning) and two basis sets for

chemically aged, oxygenated OA (including both anthropogenic and biogenic sources). Each basis set comprises five volatility

bins, ranging from 10−1 to 103 µg m−3 in saturation concentration, which approximately encompasses the volatility range of570

SVOCs. The chemical aging of OA is modeled by redistributing OA mass along predefined pathways within and between these

basis sets, decreasing its volatility while simultaneously increasing its oxidation state. The gas-phase hydroxyl radical reaction

rates for the chemical aging of POA and anthropogenic SOA, except those originating from biomass burning, are assumed

to be 4× 10−11 and 2× 10−11 cm3 molecule−1 s−1, respectively. In contrast, the chemical aging of biogenic SOA and SOA

originating from biomass burning (both anthropogenic and biogenic) is disabled. The 1.5-D VBS scheme incorporates the575

oxidation of traditional anthropogenic and biogenic gaseous precursors of SOA utilized in SOAP, including benzene, toluene,

xylene, isoprene, monoterpenes, and sesquiterpenes. Similarly to SOAP, this module also considers the oxidation of IVOCs.

However, unlike SOAP, in which one surrogate species represents all anthropogenic IVOC emissions, this module uses four

surrogate species for source-specific IVOC emissions (specifically, for IVOC emissions from gasoline vehicles, diesel vehicles,

other anthropogenic sources, and biomass burning). Also, unlike SOAP, which maps POA emissions from all anthropogenic580

sources to a single aerosol species, the 1.5-D VBS scheme assigns POA emissions to the individual surrogate OA species

within the volatility basis sets. This allocation is based on five source-specific volatility distribution factors, which correspond

to POA emissions from gasoline vehicles, diesel vehicles, meat cooking, other anthropogenic sources, and biomass burning.

At the same time, it means that the 1.5-D VBS scheme implicitly assumes that POA emissions from relevant sources should

contain POMSV.585

Code and data availability. CAMx version 7.10 is available at http://camx-wp.azurewebsites.net/download/source (Ramboll, 2021). WRF

version 4.2 can be downloaded from https://github.com/wrf-model/WRF/releases (WRF, 2020). MEGAN version 2.10 can be obtained

from https://bai.ess.uci.edu/megan/data-and-code/megan21 (Guenther et al., 2014). The FUME emission model can be found at https:

//doi.org/10.5281/zenodo.10142912 (Belda et al., 2023). OC measurements at the Koetice station can be obtained from the EBAS database

available at https://ebas-data.nilu.no/default.aspx (EBAS, 2025). All meteorological data used in the paper can be obtained from the Czech590

Hydrometeorological Institute (CHMI; https://www.chmi.cz). The CAMS global reanalysis (EAC4) monthly averaged fields can be down-

loaded from https://ads.atmosphere.copernicus.eu/datasets/cams-global-reanalysis-eac4-monthly?tab=download (ADS, 2025). The Czech

REZZO and ATEM emission data can be obtained on request from their publishers, the CHMI and the Studio of Ecological Models

(https://www.atem.cz), respectively. The complete model configuration and all the simulated data (1-dimensional hourly data) used for the

analysis are stored at the Department of Atmospheric Physics of the Charles University data storage facilities (about 3TB) and are available595

upon request from the main author.
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